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ABSTRACT: We have devised a chemocentric informatics methodology for drug
discovery integrating independent approaches to mining biomolecular databases. As a
proof of concept, we have searched for novel putative cognition enhancers. First, we
generated Quantitative Structure−Activity Relationship (QSAR) models of compounds
binding to 5-hydroxytryptamine-6 receptor (5-HT6R), a known target for cognition
enhancers, and employed these models for virtual screening to identify putative 5-HT6R
actives. Second, we queried chemogenomics data from the Connectivity Map (http://
www.broad.mit.edu/cmap/) with the gene expression profile signatures of Alzheimer’s
disease patients to identify compounds putatively linked to the disease. Thirteen common
hits were tested in 5-HT6R radioligand binding assays and ten were confirmed as actives.
Four of them were known selective estrogen receptor modulators that were never reported
as 5-HT6R ligands. Furthermore, nine of the confirmed actives were reported elsewhere to
have memory-enhancing effects. The approaches discussed herein can be used broadly to
identify novel drug−target−disease associations.

■ INTRODUCTION
Target-oriented drug discovery is one of the most popular
modern drug discovery approaches.1−5 Target-oriented ap-
proaches rely on established functional associations between
activation or inhibition of a molecular target and a disease.
Modern genomics approaches including gene expression
profiling, genotyping, genome-wide association, and muta-
genesis studies continue to serve as useful sources of novel
hypotheses linking genes (proteins) and diseases and providing
novel putative targets for drug discovery.
In recent years, functional genomics approaches have been

increasingly complemented by chemical genomics,6−11 i.e.,
large scale screening of chemical compound libraries in multiple
biological assays.12−16 The resulting data (either generated
within chemical genomics centers or collected and curated from
published literature) have been deposited in many public and
private databases such as the NIMH Psychoactive Drug
Screening Program Ki Database (Ki-DB),

17 PubChem,18

ChEMBL,19 WOMBAT,20 and others (reviewed in ref 21).
Various in silico techniques have been exploited for analyzing

target-specific biological assay data. A recent publication by
Kortagere and Ekins22 could serve as a good summary of most
common target-oriented computational drug discovery ap-
proaches including (1) structure based virtual screening
(docking and scoring) using either experimentally characterized

(with X-ray or NMR) or predicted by homology modeling
structure of the target protein, (2) chemical similarity searching
using known active compounds as queries, (3) pharmacophore
based modeling and virtual screening, (4) quantitative
structure−activity relationship (QSAR) modeling, and (5)
network or pathway analysis.
Data resulting from large-scale gene or protein expression or

metabolite profiling (often collectively referred to as 'omics’
approaches23−26) can be explored not only for specific target
identification but also in the context of systems pharmacology
to identify networks of genes (or proteins) that may collectively
define a disease phenotype. For example, ‘omics’ data can be
used to query genes or proteins, or post-translationally
modified states of proteins that are over (or under-)-expressed
in patients suffering from a particular disease. These types of
data can be found in a number of public repositories such as the
Gene Expression Omnibus (GEO),27,28 GEOmetadb,29 the
Human Metabolome Database (HMDB),30,31 Kinase SARfari,32

the Connectivity Map (cmap),33,34 the Comparative Toxico-
genomics Database (CTD),35 STITCH,36,37 GenBank,38,39 and
others. Importantly, many of these databases integrate, in some
way, chemical effects on biological systems providing an

Received: September 2, 2011
Published: April 26, 2012

Article

pubs.acs.org/jmc

© 2012 American Chemical Society 5704 dx.doi.org/10.1021/jm2011657 | J. Med. Chem. 2012, 55, 5704−5719

http://www.broad.mit.edu/cmap/
http://www.broad.mit.edu/cmap/
pubs.acs.org/jmc


opportunity to explore diverse computational approaches,
individually or in parallel, to modeling and predicting the
relationships between drug structure, its bioactivity profile in
short-term biological assays, and its effects in vivo.
Recently, a group of scientists at the Broad Institute

established the Connectivity Map (cmap) database to catalog
the biological responses of a large number of diverse chemicals
in terms of their gene expression profiles.33 Indeed, insights
into disease pathology and underlying mechanisms can be
revealed by the disease ‘gene signature’, i.e., those genes whose
expression varies consistently between patients and healthy
individuals (controls).40 Gene-expression profiling has been
often applied to elucidate the mechanisms underlying the roles

of biological pathways in a disease,41,42 reveal arcane subtypes
of a disease,43,44 and estimate cancer prognosis.45,46 At the same
time, the treatment of cultured human cells with chemical
compounds that target a disease can produce a drug related
‘gene signature’, i.e., differential expression profile of genes in
response to the chemical.40,47−49 It has been shown that
examining the correlations between gene expression profiles
characteristic of a disease and those modulated by drugs may
lead to novel hypotheses linking chemicals to either etiology or
treatments for a disease.33,43,50−56

The cmap database provides an unusual but intriguing
example of what we shall call a chemocentric ‘omics’ database
and methodology for generating independent and novel drug

Figure 1. Computational hits.
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discovery hypotheses. Indeed, there exists a wealth of
information buried in the biological literature and numerous
specialized chemical databases17−20,57 linking chemical com-
pounds and biological data (such as targets, genes, experimental
biological screening results; cf. ref 58). The chemocentric
exploration of these sources, either individually or in parallel,
opens up vast possibilities for formulating novel drug discovery
hypotheses concerning the predicted biological or pharmaco-
logical activity of investigational chemical compounds or known
drugs. The integration and cross-validation of such independent
structural hypotheses can increase the quality of the final hit list
of predicted actives.
Herein, we describe a novel integrative chemocentric

informatics approach to drug discovery that integrates computa-
tional hits generated from independent analysis of both
traditional target-specific assay data and those resulting from

large scale genomics and chemical genomics studies. As a proof
of concept, we have focused on the Alzheimer’s disease as one
of the most debilitating neurodegenerative diseases with
complex etiology and polypharmacology. We have considered
and cross-examined two independent but complementary
approaches to the discovery of novel putative anti-Alzheimer’s
drugs. First, we have employed a traditional target-oriented
cheminformatics approach to discovering anti-Alzheimer’s
agents. We have built QSAR models of ligands binding to the
5-hydroxytryptamine-6 receptor (5-HT6R). It has been shown
that 5-HT6R antagonists can produce cognitive enhancement in
animal models,59 and it has been suggested that this receptor
may be a potential target for treating cognitive deficits in
Alzheimer’s disease.60 We have then used models developed
with the rigorous predictive QSAR modeling workflow
established and implemented in our laboratory61 for virtual

Figure 2. Study design for the integrated informatics approach for drug discovery integrating network mining, text mining of biological literature, the
analysis of disease gene signatures, and efficient cheminformatics techniques to discover novel drugs with desired polypharmacology.
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screening (VS) of the World Drug Index database (WDI)57 and
DrugBank62 to identify putative cognition enhancing agents as
compounds predicted to interact with 5-HT6R. Second, we
have explored (chemo)genomic data available from the cmap
project33,34 to link chemical compounds and Alzheimer’s
disease without making explicit hypotheses about target-specific
mechanisms of action, i.e., treating Alzheimer’s disease as a
complex polypharmacological disease.
We then cross-examined and combined common hits

regarded as structural hypotheses resulting from both
approaches toward common integrated hits supported by two
independent lines of computationally based evidence. Thirteen
common hits (Figure 1) were tested in 5-HT6R binding assays
using the resources of the NIMH Psychoactive Drug Screening
Program (PDSP),17 and ten were confirmed experimentally as
actives. Unexpectedly, we found that the confirmed actives
included several selective estrogen receptor modulators
(SERMs) that were never reported earlier as 5-HT6R ligands
suggesting that they may be potential cognitive enhancers.
Indeed, we have identified clinical evidence in biomedical
literature in support of this hypothesis. We believe that
approaches discussed in this study can be applied to a large
variety of systems to identify novel drug−target−disease
associations.

■ MATERIALS AND METHODS
Integrative Chemocentric Informatics Approach. We

have devised an integrative workflow focused on the discovery
of new drug candidates and finding new uses for existing drugs
by integrating predictions generated from different data types
and methods. Currently, the workflow (Figure 2) incorporates
three major components: (1) a module for QSAR-based VS of
chemical libraries to identify new ligands for target proteins, (2)
a network-mining module to identify small molecule
therapeutics for specific diseases without necessarily knowing
the underlying target-specific mechanism; this module explicitly
relies on cmap,33,34 an external online database (www.
broadinstitute.org/cmap/) that links the effects of different
drugs and diseases using gene expression profiles, and (3)
ChemoText,58 an in-house repository of relationships between
chemicals, diseases, proteins, and biological processes. The first
two modules have been employed extensively for studies
reported herein.
We start our study with identifying established disease−

target associations (e.g., 5-HT6R is implicated in treating
Alzheimer’s disease). Then we mine the biological literature
and specialized databases to extract ligands known to interact
with the biological target of interest. Activity data could be
either binding affinities (Ki values) or functional data (IC50
values for agonists and antagonists). Binding and functional
data could be either continuous (e.g., Ki and IC50 values) or
categorical (e.g., active vs nonactive or agonist vs antagonist) in
nature. At this stage, we use our QSAR-based VS module (see
Figure 3; predictive QSAR workflow) to generate robust
predictive QSAR models that can be employed for VS of
chemical libraries to derive new hypotheses about putative
actives (agonists or antagonists).
In parallel, we mine the biological literature for gene

signatures associated with the disease and/or for all related
protein targets implicated in the disease state. We use these
disease related genes and proteins to query specialized
databases to extract information about disease−protein
(gene)−chemical connections. For example, we use disease

gene signatures to query the cmap for putative treatments, and
we use related proteins to query ChemoText for related
chemicals to establish new disease−protein (gene)−chemical
connections. After a thorough analysis of all data, we select hit
compounds that are expected to be novel treatments for the
disease (cf. Figure 2).
Finally, we integrate hypotheses derived from the QSAR-

based VS approach with those derived from text/network
mining. The common structural hits identified by both
approaches are considered for further experimental validation.
We assume that the quality of the final structural hypotheses
resulting from independent approaches to knowledge mining in
chemocentric databases is intrinsically better than that in any
computational hit generated in respective independent studies.

Databases and Data Sets. PDSP Ki-DB. PDSP Ki-DB
17

(http://pdsp.med.unc.edu/pdsp.php) includes published bind-
ing affinities (Ki) of drugs and chemical compounds for
receptors, neurotransmitter transporters, ion channels, and
enzymes. It currently lists more than 47000 Ki values for more
than 700 molecular targets. Ki-DB represents a curated, fully
searchable database of both published data and data internally
derived from the NIMH-PDSP. The experimental data for
Alzheimer’s disease related target 5-HT6R were extracted from
the PDSP Ki-DB available in the public domain. The complete
5-HT6R data set included binding affinity data for 250
compounds.

World Drug Index (WDI).WDI57 is an authoritative database
for marketed and developmental drugs providing information
about internationally recognized drug names, synonyms, trade
names, trivial names, trial preparation codes, compound
structures, and activity data. Herein, we used WDI for QSAR-
based VS to identify putative 5-HT6R ligands.

DrugBank. DrugBank62 (http://www.drugbank.ca) is a
unique bioinformatics and cheminformatics resource that
combines detailed drug data (i.e., chemical, pharmacological,
and pharmaceutical) with comprehensive drug target informa-
tion (i.e., sequence, structure, and pathway). Currently, the
database contains nearly 4800 drug entries. Herein, we used
DrugBank for virtual screening using QSAR models to identify
putative 5-HT6R ligands among known drugs.

PubChem. PubChem18 is a public repository of chemical
structures and their activities obtained from a variety of
biological assays. The PubChem compound repository
presently contains more than 30 million unique structures
with biological property information provided for many of the

Figure 3. Workflow for QSAR model building, validation, and virtual
screening as applied to the 5-HT6R data set.
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compounds. Herein, we used PubChem to obtain all chemical
structures for our data sets in SDF file format.
Connectivity Map (cmap). The cmap33,34 (http://www.

broadinstitute.org/cmap/) is a unique database for using
chemical genomics in drug discovery framework. It provides
researchers with a systematic solution for the discovery of the
functional connections among drugs, genes, and diseases. The
database used in this study (cmap build 02) included 7056
genome-wide expression profiles representing 6100 individual
treatment instances with 1309 bioactive small molecules (i.e.,
drugs and other biologically active compounds). All gene
expression profiles included in the cmap were derived from
treating cultured human cells (MCF7, PC3, HL60, SKMEL5,
HepG2, and SHSY5Y) with chemical compounds.
NetAffx. NetAffx63,64 (http://www.affymetrix.com) gene

ontology mining tool is a web-based, interactive tool that
permits traversal of the gene ontology graph in the context of
microarray data. It accepts a list of Affymetrix probe sets and
renders a gene ontology graph as a heat map colored according
to significance measurements. It also details and annotates
probe sets on Affymetrix GeneChip microarrays. In this study,
we used NetAffx to populate our disease gene signatures with
Affymetrix U133A probe sets.
ChemoText. ChemoText58 is an in-house repository of

chemical entities, and activity terms (indicating biological
effects) extracted from annotations provided in Medline
records. This resource has different applications in drug
discovery projects. First, we can use ChemoText in a
discovery-mode to formulate independent hypotheses about
chemical−disease associations according to Swanson’s ABC
rule.65 Second, we can use it as an information retrieval tool to
gather relevant data about chemical−protein (or gene)−disease
connections derived from biomedical literature. In this study,
we used ChemoText to retrieve all available biological
information about the final computational hits predicted by
our integrative approach. This analysis helped us in assessing
the novelty of the produced hypotheses and in validating some
of them.

■ COMPUTATIONAL METHODS
QSAR Modeling and QSAR-Based Virtual Screening.

Preprocessing of the Data Set. We used a workflow for chemical
data curation that was developed in our lab and published recently.66

First, all molecules were “washed” using the “Wash Molecules”
application in MOE (v.2007.09).67 Using this tool, we processed
chemical structures by carrying out several standard operations
including 2D depiction layout, hydrogen correction, salt and solvent
removal, chirality, and bond type normalization (all details can be
found in the MOE manual67). Second, we used ChemAxon’s
Standardizer (v. 5.2.6)68 to harmonize the representation of aromatic
rings. Third, we checked all normalized molecular structures in the
data set for duplicated compounds using the “Sort Unique Entries”
application in MOE. Our analysis resulted in the detection and
removal of 56 duplicate chemical entries leaving 194 unique
normalized molecular structures. These 194 unique, organic
compounds, including 102 actives and 92 nonactives (see Table S1
of Supporting Information) were used for binary QSAR studies. We
assigned the activity class for each compound based on its Ki value(s)
obtained from the PDSP and according to PDSP specifications as
reported at the PDSP Web site (http://pdsp.med.unc.edu/).
Compounds with Ki values ≥10 μM were considered nonactives and
assigned to class 0, whereas compounds with Ki values <10 μM were
considered actives and assigned to class 1.
Data Set Division for Model Building and Validation. Following

our predictive QSAR modeling workflow (summarized in a recent

review61), all QSAR models generated to classify 5-HT6R actives vs
nonactives were validated by predicting both test and external
validation sets. The original data set of 194 compounds (102 actives
and 92 nonactives) was randomly split into 5 different subsets of
nearly equal size to allow for external 5-fold cross-validation (CV)69,70

where the data set compounds were ranked from 1 to n (n = total
number of compounds in the data set), then the first compound went
to the external set, and the following 4 compounds were included in
the modeling set. Then the sixth compound went to the external set,
and the following 4 compounds went to the modeling set. This process
was continued until all compounds were divided between the external
and the modeling sets. In this protocol, each subset including 20% of
the original data set was systematically employed as the external
validations set, while the remaining 80% of the compounds constituted
the modeling set.

Another level of internal validation was achieved by comparing
model performance for training and test sets. This approach is always
employed as part of our predictive QSAR modeling workflow61,71 to
emphasize the fact that training-set-only modeling is not sufficient to
obtain reliable models that are externally predictive.72 Thus, for each
collection of descriptors, the modeling sets (each including 80% of the
original data set) were further partitioned into multiple chemically
diverse training and test sets of different sizes using the Sphere
Exclusion method implemented in our laboratory.73 Only models with
external predictive accuracy for test sets above certain threshold (see
Selection and Validation of QSAR Models in Supporting Information)
were retained for the consensus prediction of the external validation
sets. Finally, models that demonstrated the highest predictive power
for both evaluation sets were used in consensus fashion for virtual
screening of external compound libraries. The model building and
validation approach is illustrated schematically in Figure 3.

Combinatorial QSAR Modeling. Two QSAR modeling approaches
of different nature were used concurrently to generate classification

models for 5-HT6R actives vs nonactives (Figure 4). The first
approach relied on k-nearest neighbor (kNN) model optimization
method combined with Dragon descriptors, and the second employed
classification based on association (CBA) and subgraphs (SG)
descriptors. All details about QSAR methods, evaluation of generated
models, and consensus prediction are available in the Supporting
Information.

Virtual Screening. To identify putative ligands, validated consensus
kNN-Dragon models generated for 5-HT6R ligands were used for
virtual screening of both the 59000 molecules within the WDI57

chemical library and 1300 DrugBank62 compounds included in the
cmap database. The identified hits (by consensus agreement between
all accepted kNN-Dragon models) were then evaluated additionally
using CBA-SG classifier when there was a need to reduce the size of
the VS library generated with kNN-Dragon models.

Figure 4. Comparison of the QSAR approaches to classify 5-HT6R
actives vs nonactives based on CCRevs.
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Biological Network Mining. Querying the cmap with
Alzheimer’s Disease Gene Signatures. The cmap33,34 was used to
discover unexpected connections between chemicals, genes, and
Alzheimer’s disease by generating a detailed map that links gene
patterns associated with Alzheimer’s to corresponding patterns
produced by drug candidates and a variety of genetic perturbations
included in the cmap database. The effects of different drugs and
diseases are described using genomic signatures, the full complement
of genes that are turned on and off by a particular drug or disease. We
start by querying the online database (cmap: http://www.
broadinstitute.org/cmap/) with gene signatures characteristic of
Alzheimer’s disease. Then, a computer program, that uses
sophisticated pattern-matching methods, matches the barcodes based
on the patterns shared among Alzheimer’s gene signature and drugs
included in the cmap.
Alzheimer’s Disease Gene Signatures. In order to query the cmap,

a disease gene signature should exist. Two lists of genes are required to
perform the query: a list of up-regulated genes and a list of down-
regulated genes characteristic of a disease. Query signatures can be
obtained from two major sources: (1) biological literature; gene
signatures of diseases can be extracted through the National Library of
Medicine’s PubMed system (http://www.ncbi.nlm.nih.gov/pubmed);
(2) GEO27,28 database, a gene expression/molecular abundance
repository supporting MIAME74 (Minimum Information About a
Microarray Experiment) compliant data submissions, and a curated,
online resource for gene expression data browsing, query, and retrieval.
For the purposes of this study, two independent reports of gene-
expression changes in brain tissues from Alzheimer’s patients were
used to derive gene signatures (i.e., lists of genes up- and down-
regulated in Alzheimer’s disease) to query the cmap. Signature 1 (from
the hippocampus) consisted of 40 genes reported by Hata, R. et al.,75

and signature 2 (from cerebral cortex) consisted of 25 genes reported
by Ricciarelli, R. et al.76 NetAffx was then used to map gene symbols
and Unigene identifiers to populate gene signature lists with
Affymetrix U133A probe sets to query the cmap.
Hypothesis Integration. We cross-examined and integrated

structural hypotheses generated independently from both QSAR-
based VS and biological network mining efforts to identify and accept
common hits only. This step of hypotheses integration was based on
structural identity comparisons. All chemical structures of cmap
compounds were retrieved from DrugBank62 using their DrugBank
identifiers. Identical structures only were then accepted for further
analysis. All chemical structures labeled as identical were also subjected
to a manual curation step where structures and names of the chemical
compounds were compared in different databases to make sure they
both refer to the same chemical entity. Common hits were then
considered for further experimental validation.
Experimental Validation in Radioligand Binding Assays.

Final common hit compounds from QSAR-based VS and cmap
negative connections with Alzheimer’s were purchased and submitted
to PDSP for experimental target validation. The experimental details of
radioligand binding assays are available at the PDSP Web site.17

■ RESULTS AND DISCUSSION

QSAR Modeling of 5-HT6R Actives vs Nonactives. kNN
with Dragon descriptors was employed to classify modeling set
compounds into 5-HT6R actives vs nonactives. As part of 5-fold
cross-validation process, the data set was divided, into five
subsets of nearly equal size. Four parts (selected systematically)
formed modeling sets with 155 compounds each, and the fifth
part, containing 39 compounds, was considered as a validation
set. Each of the five modeling sets derived to collect 5-fold CV
statistics was additionally subdivided into multiple training and
test sets (28−40 divisions) using the Sphere Exclusion
algorithm as described in Computational Methods. Multiple
QSAR models were generated independently for all training
sets and applied to the test sets. Generally, we accept models

with CCR values above or equal to 0.70 for both the training
and test sets.
However, because we were able to generate thousands of

acceptable models, we used more conservative criteria (i.e.,
CCRtrain and CCRtest above or equal to 0.90) for model
selection to predict external compounds. Basically, for each
train/test split, kNN will generate at least one model.
Increasing the “Number of Runs” option will multiply the
number of generated models. The “descriptors per model”
parameter can again multiply the number of generated models;
if kNN tries to make a model with 5 descriptors, a model with 6
descriptors, and a model with 7 descriptors in each case, the
total number of models will be tripled. So, to calculate the
number of models that will be generated, (number of train-test
splits)·(number of runs)·(number of different values “descrip-
tors per model” can take). This is an important thing to
consider before starting a modeling run: Too few models will
be unlikely to create a good predictor, while too many models
can take a very long time to generate. If the data set is a high
quality data set (i.e., there are very good distinctive features
between actives and inactives), then we may be able to generate
thousands of acceptable models. However, these models differ
in their statistical parameters. See Selection and validation of
QSAR Models in Supporting Information.
Results of Y-randomization tests confirmed that kNN-

Dragon classification models with CCRtrain and CCRtest values
above or equal to 0.90 were robust. None of the models with
randomized class labels of the training set compounds had
CCRtrain and CCRtest above 0.65 or CCRevs above 0.55 for any
split.
The CBA method was used to classify the data set using SG

descriptors. The modeling sets (described above) were used to
build the classifier in CBA77 using an initial pool of about 400
SG descriptors. The classifier gave an average CCRtrain of 0.92
(i.e., the average resulted from five different tests). Then, the
external validation sets consisting of 39 compounds were used
to assess the robustness of the classifier. The average CCRtest
was 0.78, which is not as high the CCR value for the training set
but is still statistically acceptable.
Clearly, kNN (mean CCRevs = 0.92) performed better than

CBA (mean CCRevs = 0.78) on the external validation sets (cf.
Figure 4). Therefore, we chose to use kNN-Dragon models for
VS of external drug libraries. Nevertheless, we maintained CBA-
SG models as an additional filter to suggest smaller sets of
compounds as 5-HT6R putative actives selected from the list of
virtual hits obtained with kNN-Dragon models and therefore
predicted by both models as putative actives.

QSAR-Based Virtual Screening. Since our models proved
reasonably accurate based on external validation sets, we used
the best models to mine two external databases of approved
and potential drugs for putative 5-HT6R ligands. The use of
applicability domain assures reliable predictions by the models.
Therefore, we used two types of applicability domains in the
virtual screening of compound databases. First, we used a global
applicability domain that acted as a filter and ensured some
level of global similarity between the predicted compounds and
the compounds in the modeling set. Second, we defined a local
applicability domain for each of the individual classification
models.
We first screened the WDI database57 of about 59000

compounds (approved or investigational drugs) (Figure 5).
This original collection had many duplicates (i.e., many salt
forms for the same chemical entity), and these duplicates were
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removed using MOE. We also removed all compounds that
were duplicates of those molecules that were included in our
modeling and external validation sets. Dragon descriptors were
generated for the remaining 46859 unique compounds in the
database; of these, 9732 compounds were excluded because
Dragon was unable to calculate at least one of the descriptors
generated for the modeling set. The remaining 37127
compounds were then subjected to a global applicability
domain filter for the modeling set using a strict Z cutoff of 0.5
(which formally places the allowed pairwise distance threshold
at the mean of all pairwise distance distribution for the training
set plus one-half of the standard deviation). Then, all kNN-
Dragon models with CCRtrain and CCRtest above or equal to
0.90 were employed in consensus fashion to predict 1500
compounds remaining after several filtering steps, which
resulted in the identification of the 600 predicted actives. In
an effort to reduce the number of hits, we have generated SG
descriptors for these 600 molecules and applied the CBA-SG
classifier which filtered out half of these compounds, leaving
300 compounds as putative actives for 5-HT6R. However, in
this study we explicitly focused on compounds from
DrugBank62 that were employed in the cmap project. These
VS hits from WDI should be viewed as hypothetically active
compounds awaiting the experimental confirmation; the list of
the top scoring hits is included in the Supporting Information
(Table S2).
Additionally, we screened 1300 DrugBank compounds

included in the cmap database. Dragon descriptors were
computed for 1273 unique compounds. These compounds
were then subjected to a global applicability domain filter for
the modeling set using a strict Z cutoff of 0.5. Consequently, we
placed the allowed pairwise distance threshold at the mean of
all pairwise distance distribution for the training set plus one-
half of the standard deviation, which resulted in 577 predictions
within the applicability domain. Next, validated consensus
kNN-Dragon models (i.e., all models with CCRtrain and CCRtest
above or equal to 0.90) were used to predict these 577
compounds, resulting in the identification of 140 unique
compounds predicted to be 5-HT6R actives.
Searching the Connectivity Map for Potential Anti-

Alzheimer’s Agents. We used two gene signatures for the
Alzheimer’s disease (designated as S1 and S2) to query the
cmap database in an attempt to link genes associated with the
disease to potential therapeutic agents. These two signatures
were based on two independent rank-ordered gene lists
provided by two different Gene Set Enrichment Analysis

(GSEA) studies.75,76 The two disease signatures were
compared with predefined signatures of therapeutic compounds
included in the cmap and ranked according to a connectivity
score (ranging from +1 to −1), representing relative similarity
to the disease gene lists. The connectivity score itself is derived
using a nonparametric, rank-based, pattern-matching strategy
based on the Kolmogorov−Smirnov statistic.78 Connectivity
scores are calculated using the online tools available at the
cmap (http://www.broadinstitute.org/cmap/). All instances in
the database are then ranked according to their connectivity
scores; those at the top (+) are most strongly correlated to the
query signature and looked at as disease causes, and those at
the bottom (−) are most strongly anticorrelated and
considered as possible therapeutics.
The majority of chemicals included in the cmap database are

represented by multiple independent replicates. Most com-
pounds are profiled in three different cell lines, some at
different concentrations. These are called instances for the same
chemical and defined as “a treatment and control pair and the
list of probe sets ordered by their extent of differential
expression between this treatment and control pair”.79 The
instance is the basic unit of data and metadata in cmap.
Instances of the same compound might have similar or
dissimilar connectivity scores with the query signature. We
have higher confidence in the derived connections when gene
signatures are conserved across diverse cell types and
experimental settings. However, Lamb and colleagues33,34

indicated that the nonconsistent scoring of different instances
of the same chemical may represent (1) a cellular-context-
dependent difference in activity, (2) a concentration-discrimi-
nated effect, or (3) poor reproducibility between replicates.
Therefore, the best connections are those where multiple,
autonomous instances of the same chemical have consistently
high (or low) scores. However, inconsistently scoring
compounds should not necessarily be dismissed since their
significance as potential treatments for a disease can be boosted
by additional evidence, such as predictions from QSAR models.
In this study, we were interested in compounds whose

chemogenomics profiles were negatively correlated with the
Alzheimer’s disease gene signatures. Hits with statistically
significant, negative connectivity scores could be potential
treatments for the Alzheimer’s disease; however, the list of
negatively correlated molecules might be long and must be
analyzed carefully before suggesting hypotheses of possible
mechanisms for controlling or mediating the disease. Examples
of top negative connections with both signatures S1 and S2 are
shown in Tables 1 and 2, respectively (see Tables S2 and S3 in
Supporting Information for full listings of connections and their
connectivity scores). Although the two gene signatures (i.e., for
the Alzheimer’s disease) used to query the cmap shared no
common genes, both queries resulted in a common list of
negative connections that were given a higher confidence in our
studies. All chemical structures for each chemical compound
included in the cmap were obtained from the DrugBank62 and
mapped based on the DrugBank identifiers provided by the
cmap database.

Hypothesis Generation: Integrating Independent
Hypotheses from QSAR-Based VS and cmap Analysis.
We combined hypotheses produced from two different data
sets and using two different computational methods (Figure 2):
(1) QSAR-based datamining of chemical databases in an effort
to identify novel ligands for 5-HT6R and (2) network-mining
using two signatures for Alzheimer’s disease to query the cmap

Figure 5. QSAR-based virtual screening of two chemical databases: the
WDI and DrugBank compounds included in the cmap.
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and identify possible anti-Alzheimer’s therapeutics. Our
procedure for integrating hypotheses was based on structural
identity for chemical compounds derived from both approaches

mentioned above. Compounds with negative connectivity
scores, representing genes expressed in an opposite fashion to
the imported Alzheimer’s disease query, which implies their
potential benefits to be candidate treatments, were compared
with 5-HT6R hits predicted from QSAR-based VS, and identical
compounds were regarded as common hits.
The primary goal for integrating hit lists produced by two

independent approaches in this study was initially to overcome
some of the inherent hit scoring problems in classification
QSAR and achieve higher success rates in experimental testing
of the VS hits. In other words, we often select for further
experimental validation those QSAR hits with consensus scores
above or equal to 0.90 (referred to as consensus scores in
Materials and Methods). However, many novel scaffolds that
are significantly different (i.e., structurally and possibly
therapeutically) from the training set compounds might have
lower consensus scores ranging from 0.50 to 0.90 despite the
fact that they might be actives too. Thus, this process of
integrating hypotheses derived independently from different
types of data and using multiple prediction methods allowed us
to fish out these low-confidence QSAR hits (that yet could be
highly important ligands) for further analysis. As a result, we
posit that integrating independent hypotheses is likely to
improve the overall experimental success rates of hit
compounds identified in silico.

Scoring and Integrating Structural Hypotheses to
Identify Putative Anti-Alzheimer’s Agents. Our method
for integrating hit lists was derived from a combination of
voting and statistical metrics. In the first step, we used two
different scoring functions to rank the computational hits
generated independently from both QSAR and cmap. In the
QSAR study, we used the kNN consensus score which takes
into account the total number of models used to predict the
compound’s activity and the number of models that predicted
the compound to belong to a specific class correctly. We
considered all computational hits that had an average predicted
value (i.e., consensus score) above or equal to 0.50 for further
inspection. Our analysis resulted in 140 putative 5-HT6R
actives among cmap compounds and with kNN consensus
scores ranging from 0.50 to 1.00 (see Figure 7)
However, we used the connectivity scores33 to rank the hits

resulting from querying the cmap with Alzheimer’s disease gene
signatures. Because we were interested in identifying novel
treatments for Alzheimer’s disease, we ranked hits with larger
negative connectivity scores at the top and gave them higher
confidence. Such compounds were hypothesized to have higher
chances to reverse the Alzheimer’s gene signatures and
therefore might have immense therapeutic value in Alzheimer’s
disease. We considered for further analysis all compounds that
had at least one instance of negative connection with any of the
two gene signatures used to query the cmap (S1 and S2) so as
not to miss any important connections. Our analysis resulted in
identifying 881 negative connectivity instances with S1 and 861
instances with S2 (Figure 6).
Finally, we combined the hypotheses generated from both

QSAR and cmap analyses and accepted common hits only. We
identified 97 compounds that were both predicted to be active
at 5-HT6R and had at least one instance of negative
connectivity with S1 and 106 compounds that had at least
one instance of negative connectivity with S2. Accepting only
common hits among S1 and S2 resulted in 73 putative hits (see
Figure 7). At this stage, we applied a manual curation where we
inspected all available data for these 73 hits. Each of the 73

Table 1. Top 20 Negative Connections from the cmap with
S1

compd ranka cell score instance_ID

naproxen 6100 PC3 −1 7146
sulfacetamide 6099 MCF7 −0.990 1695
amprolium 6098 HL60 −0.930 1979
aminoglutethimide 6097 MCF7 −0.913 7463
ioxaglic acid 6096 HL60 −0.897 2966
dexpanthenol 6095 MCF7 −0.871 7455
suxibuzone 6094 MCF7 −0.870 7163
chlorphenesin 6093 HL60 −0.862 1432
metixene 6092 HL60 −0.853 2451
fulvestrant 6091 MCF7 −0.843 5565
seneciphylline 6090 MCF7 −0.841 2797
troglitazone 6089 MCF7 −0.839 6991
dicloxacillin 6088 HL60 −0.834 2445
phentolamine 6087 HL60 −0.831 2362
monocrotaline 6086 MCF7 −0.828 6771
lymecycline 6085 HL60 −0.823 2953
bezafibrate 6084 PC3 −0.815 6653
6-benzylaminopurine 6083 HL60 −0.812 2351
terbutaline 6082 MCF7 −0.811 3202
clorgiline 6081 MCF7 −0.805 3219

aThe rank order is generated from estimating the connectivity scores
of 6100 individual treatment instances with S1. A rank order of 6100
corresponds to the compound with the strongest negative connectivity
S1, while a rank order of 1 corresponds to the compound with the
strongest positive connectivity with S1.

Table 2. Top 20 Negative Connections from the cmap with
S2

compd ranka cell score instance_ID

trifluoperazine 6100 HL60 −1 2389
1 6099 MCF7 −0.982 4994
ethotoin 6098 HL60 −0.977 2196
sulfafurazole 6097 HL60 −0.973 1603
quercetin 6096 MCF7 −0.964 4846
triflusal 6095 HL60 −0.925 1717
alfuzosin 6094 PC3 −0.903 4644
metitepine 6093 HL60 −0.890 1616
trioxysalen 6092 MCF7 −0.885 6216
7 6091 MCF7 −0.883 258
tanespimycin 6090 HL60 −0.873 6184
spironolactone 6089 MCF7 −0.871 6255
nifurtimox 6088 MCF7 −0.859 4953
iobenguane 6087 HL60 −0.847 1729
undecanoic acid (u0125) 6086 PC3 −0.845 663
monorden 6085 MCF7 −0.841 5947
primidone 6084 PC3 −0.833 6723
calcium pantothenate 6083 MCF7 −0.828 4775
phthalylsulfathiazole 6082 HL60 −0.826 3033
ceforanide 6081 PC3 −0.824 6751

aThe rank order is generated from estimating the connectivity scores
of 6100 individual treatment instances with S2. A rank order of 6100
corresponds to the compound with the strongest negative connectivity
S2, while a rank order of 1 corresponds to the compound with the
strongest positive connectivity with S2.
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common hits had three scores (kNN consensus score, cmap
connectivity score with S1, and cmap connectivity score with
S2) to be considered in the final decision to prioritize hits for
further testing. Therefore, we estimated the average con-
nectivity scores for all predicted hits across all treatment
instances for each of the S1 and S2 hits. Then, we excluded
those compounds that had high positive connectivity scores in
some treatment instances of the same compound. Finally, we
retained 39 compounds that had acceptable negative average
connectivity scores at least with one signature (see Figure 7).
We hypothesized that these compounds could be tested as
putative 5-HT6R hits and potential cognition enhancing agents
in the Alzheimer’s disease. One of the final 39 hits, vinpocetine,
is worthy of special attention as there is new evidence that this
compound may play a role in the treatment of Parkinson’s
disease and Alzheimer’s disease.80,81 Details on all these 39 VS
hits are provided in Tables 3 and 4.
Each of the 39 common hits had three scores (kNN

consensus score, cmap connectivity score with S1, and cmap
connectivity score with S2) to be considered in the final

decision to prioritize hits for further experimental testing. We
plotted the mean connectivity scores vs kNN QSAR consensus
scores generating separate plots for S1 and S2 (see Figure 8) to
analyze these hits in further details.
Additionally, another level of confidence was achieved

(besides considering both kNN CS and cmap scores) by giving
more emphasis to molecules that belonged to the same
pharmacological or therapeutic group or had very high
structural similarity to hits of higher confidence. This step
permitted the retrieval of some compounds that had less
significant negative connectivity scores with the disease (e.g.,
null connectivity or even low positive connectivity scores in few
instances). We noticed that the 39 putative actives belonged to
several major therapeutic groups (see Table 4): antipsychotics,
antidepressants, antihistamines, selective estrogen receptor
modulators (SERMs), and calcium channel blockers. Among

Figure 6. Querying the connectivity map with Alzheimer’s disease
gene signatures (S1 and S2).

Figure 7. Integrating hypotheses from QSAR modeling and cmap
negative connections.

Table 3. Final 39 Computational Hits from QSAR-Based VS
and cmap

cmap name
cmap
score1

cmap
score2

num.
kNN
models

kNN
CS

kNN
pred.

CBA
pred.

acepromazine −0.528 −0.496 441 0.93 B B
alimemazine −0.121 −0.117 438 1.00 B B
astemizole −0.349 −0.237 328 0.91 B B
bepridil −0.134 −0.409 393 0.89 B B
bromperidol −0.239 −0.213 428 0.83 B B
cetirizine −0.495 −0.327 421 0.92 B B
chlorprothixene −0.277 −0.298 442 0.90 B B
cinchocaine −0.004 −0.335 423 0.58 B B
cinnarizine −0.349 −0.149 414 0.98 B B
citalopram −0.003 −0.260 429 0.71 B NB
1 −0.378 −0.265 409 0.91 B B
2 −0.192 −0.310 437 0.96 B B
cloperastine −0.273 −0.353 443 0.88 B B
3 0.093 −0.058 422 0.97 B B
diltiazem −0.128 −0.336 433 0.72 B NB
4 0.027 −0.259 444 0.95 B B
5 −0.303 −0.228 393 0.84 B NB
flavoxate −0.127 −0.112 403 0.71 B NB
6 0.055 −0.138 351 0.98 B B
imipramine −0.400 −0.214 427 0.96 B B
laudanosine −0.226 −0.174 411 0.78 B NB
7 −0.028 −0.078 428 0.71 B B
meclozine −0.365 −0.171 439 0.95 B B
mepacrine −0.236 −0.301 418 0.53 B B
methylergometrine −0.400 −0.509 441 0.98 B B
naftifine −0.198 −0.148 359 0.85 B B
8 0.011 −0.354 433 0.93 B B
phenoxybenzamine −0.461 −0.309 444 0.79 B NB
piperidolate −0.168 −0.119 431 0.69 B NB
9 −0.247 −0.206 435 0.96 B B
nitrarine
dihydrochloride

−0.086 −0.213 381 0.72 B B

promazine −0.210 −0.307 424 0.97 B B
10 0.047 −0.058 356 0.56 B NB
11 0.300 −0.220 435 0.93 B B
telenzepine −0.419 −0.114 387 0.68 B B
terfenadine −0.183 −0.512 416 0.51 B NB
vanoxerine −0.450 −0.233 374 1.00 B NB
vinpocetine −0.177 −0.132 376 0.76 B B
13 −0.152 0.144 434 0.98 B B
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these groups, predicting SERMs to have activity at 5-HT6R was
the most surprising.
Hypothesis Testing: Evaluation of Computational Hits

at Human Cloned 5-HT6 Receptors. Common hits from
QSAR-VS studies and cmap were taken forward for biological
validation, in binding assays, for the 5-HT6 receptor. As
discussed above, we identified 39 chemicals, out of 59000
molecules included in the WDI,57and 1300 compounds

included in the cmap, as consensus hits and putative actives
for 5-HT6R with higher chances of having potential cognition
enhancement effects in Alzheimer’s disease; none of these hits
was included in the training set used to develop QSAR models.
Then, we prioritized 12 compounds from a list of 39 molecules
plus an additional compound; a SERM that was among the top
QSAR-VS hits that was not included in the cmap (1−13,57 see
Tables 3 and 5) for further experimental validation in 5-HT6R
radioligand binding assays. It should be noted that compound
12 was tested because it was a SERM predicted with a high CS
of 0.93, and we wanted to test it because three other SERMS
were among our common hit list of 39 compounds. Our final
selection was based on different criteria: (1) we tested some
compounds with high consensus scores and stronger negative
connectivity with Alzheimer’s disease, (2) some compounds
were selected because they belonged to the same therapeutic
class as several other predicted hits and were not known before
to bind to 5-HT6R such as selective estrogen receptor
modulators (SERMs) (e.g., 1, 11, and 12), (3) we tested
some compounds with low kNN CS (e.g., 10 having a kNN CS
of 0.56) if other hits that belonged to the same therapeutic class
had high consensus scores (e.g., 11 and 12 having kNN CS
equal to 0.93 and 1 having a kNN CS of 0.91), and (4) we also
tried to test predictions that had strong negative connectivity

Table 4. Therapeutic Classes of the 39 Final Computational
Hits from QSAR-Based VS and cmap

cmap name theraputic class/use

acepromazine antipsychotic
alimemazine antipruritic, sedative, hypnotic and antiemetic
astemizole anti-histamine
bepridil calcium channel blocker once used to treat angina
bromperidol neuroleptic, used as an antipsychotic in the treatment

of schizophrenia
cetirizine second-generation antihistamine
chlorprothixene typical antipsychotic drug of the thioxanthene class
cinchocaine local anesthetic
cinnarizine antihistamine, which is mainly used for the control of

nausea and vomiting due to motion sickness
citalopram antidepressant drug of the selective serotonin reuptake

inhibitor (SSRI) class
1 SERM
2 tricyclic antidepressant
cloperastine cough suppressant
3 atypical antipsychotics
diltiazem calcium channel blocker
4 psychotropic agent with tricyclic antidepressant and

anxiolytic properties
5 calcium channel blocker
flavoxate anticholinergic with antimuscarinic effects
6 antipsychotic
imipramine tricyclic antidepressant
laudanosine Benzyltetrahydroisoquinoline alkaloid; interacts with

GABA, opioid, and nicotinic acetylcholine receptors.
7 Morpholino derivative of quercetin; it is a potent

inhibitor of phosphoinositide 3-kinase s (PI3Ks).
meclozine antihistamine considered to be an antiemetic
mepacrine Antiprotozoal, antirheumatic, and an intrapleural

sclerosing agent; it is known to act as a histamine N-
methyltransferase inhibitor

methylergometrine psychedelic alkaloid
naftifine allylamine antifungal drug
8 second-generation tricyclic antidepressant
phenoxybenzamine nonspecific, irreversible alpha antagonist
piperidolate antimuscarinic
9 drug used in scientific research, which acts as a

moderately selective dopamine D3 receptor partial
agonist

nitrarine
dihydrochloride

hyhpotensive, spasmolytic, coronary dilator and
sedative

promazine antipsychotic
10 SERM
11 SERM
telenzepine anticholinergic or sympatholytic
terfenadine antihistamine formerly used for the treatment of

allergic conditions
vanoxerine piperazine derivative, which is a potent and selective

dopamine reuptake inhibitor (DRI)
vinpocetine Vinpocetine has been identified as a potent anti-

inflammatory agent that might have a potential role
in the treatment of Parkinson’s disease and
Alzheimer’s disease.80,81

13 typical antipsychotic drug

Figure 8. Plots for kNN scores vs cmap connectivity scores for 39 final
common hits from QSAR-based VS and cmap for (A) Alzheimer’s
disease signature S1 and (B) Alzheimer’s disease signature S2. Squares,
compounds predicted and validated as 5-HT6R actives having negative
connectivity scores with Alzheimer’s disease gene signatures;
diamonds, compounds predicted and experimentally validated as 5-
HT6R actives but having positive connectivity scores with one of the
Alzheimer’s disease gene signatures; triangles, compounds predicted as
5-HT6R actives having negative connectivity scores with Alzheimer’s
disease gene signatures but found nonactives in radioligand binding
assays against 5-HT6R; circles, compounds predicted as 5-HT6R
actives which have negative connectivity scores with Alzheimer’s
disease gene signatures but were not experimentally tested.
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scores with one query signature but had much weaker negative
connectivity with the second signature to see if there is one
specific signature that was generating better results.
We found that 10 of these 13 predicted actives were

confirmed experimentally to inhibit 5-HT6R radioligand
binding thereby achieving a success hit rate of 77% in this
proof-of-concept study (see Table 5). One of these 10
confirmed hits was clozapine, which is known to bind 5-
HT6R but was not included in our training set. Binding affinity
(Ki) values for the nine predicted hits were in the range 17−

4125 nM, with six compounds having Ki values <1 μM. These
six highest affinity compounds were 3 (Ki = 17 nM),17 4 (Ki =
105 nM, Figure 9A), 2 (Ki = 112 nM, Figure 9B), 13 (Ki = 169
nM, Figure 9C), 8 (Ki = 214 nM, Figure 9D), and 10 (Ki = 750
nM, Figure 9E).

Among the tested compounds, we found that compounds
having negative connectivity scores and kNN CS above 0.90
were all true actives at 5-HT6R achieving a success rate of
100%. We also found that lowering the threshold to 0.50
resulted in 3 false positives which decreased the success rate
down to 77%. It was strikingly important that we were able to
prioritize a VS hit (i.e., 10) with very low kNN CS of 0.56 and
insignificant negative connectivity scores with Alzheimer’s (see
Table 5) and validate that this compound was a true active of 5-
HT6R and a potential cognition enhancer. This is a clear

Table 5. Experimental Validation Results for the 13
Computational Hits Predicted as 5-HT6R Ligands and Had
Negative Connections with Alzheimer’s Disease Gene
Signatures

PDSP ID score1b/cell

compd CIDa score2c/cell
kNN
CSd

CBA
pred.e Ki (nM)

1 13499 −0.602/PC3 0.91 Bf 1,956.0
1548953 −0.982/

MCF7
2 13494 −0.768/PC3 0.96 B 112.0

2801 −0.814/
MCF7

3 24842 −0.590/PC3 0.97 B 17.0g

2818 −0.652/
MCF7

4 13495 −0.463/
MCF7

0.95 B 105.0

667477 −0.777/HL60
5 14821 −0.520/

MCF7
0.84 NBh NB

3336 −0.683/HL60
6 14815 −0.493/

MCF7
0.98 B 1,188.0

3396 −0.551/HL60
7 13502 −0.790/

MCF7
0.69 B NB

3973 −0.883/
MCF7

8 13503 −0.555/PC3 0.96 B 214.0
4543 −0.586/

MCF7
9 13498 −0.741/

MCF7
0.79 B NB

3038495 −0.619/HL60
10 13505 −0.626/HL60 0.56 NB 750.0

5035 −0.619/HL60
11 13506 0/MCF7 0.93 B 1,041.0

2733526 −0.531/
MCF7

12i 16514 N/A 0.93 B 4,125.0
3005573 N/A

13 13510 −0.609/PC3 0.98 B 169.0
5311507 −0.746/HL60

success rate 77% for predictions with
kNN CS ≥ 0.5

100% for predictions with
kNN CS ≥ 0.9

aCID, PubChem compound ID. bcmap score1, the highest negative
connectivity score for this compound with S1 (or the smallet positive
in case all other scores are positive). ccmap score2, the highest negative
connectivity score for this compound with S2 (or the smallest positive
in case all other scores are positive). dCS, consensus score. eCBA
pred., predicted binding to 5-HT6 receptors by CBA.

fB, active. gPDSP
certified data. hNB, nonactive. iToremifene was not included in the
cmap database but was prioritized because 3 other related SERMs
were hits from both cmap and QSAR-based VS.

Figure 9. Competition binding isotherms at 5-HT6R for several
predicted actives: (A) 2 (red triangle) and chlorpromazine (square),
and 4 (blue triangle) and chlorpromazine (square); (B) 8 (red
triangle) and chlorpromazine (square), and 10 (blue triangle) and
chlorpromazine (square); (C) 13 (triangle) and chlorpromazine
(square), versus [3H]LSD.
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example on the importance of integrating independent
hypotheses to prioritize for testing the otherwise less significant
computational hits.
Mining of the biomedical literature using ChemoText

identified possible neuroprotective, in addition to cognitive-
and memory-enhancing, effects for most of the computational
hits (see Table 6), although there is no evidence that 5-HT6R-

active compounds are neuroprotective. The list of all 39
compounds predicted by our integrative approach as putative 5-
HT6R actives with possible anti-Alzheimer’s effects is shown in
Table 5.
SERMs Identified as 5-HT6R Ligands. Several selective

estrogen receptor modulators (SERMs) were predicted as 5-
HT6R ligands and also had negative connections with the
Alzheimer’s disease gene signatures. Compounds 1, 10, and 11
had negative connections with Alzheimer’s disease gene
signatures in the cmap database.33,34 Compound 12 was not
included in the cmap but was predicted as 5-HT6R active by
QSAR-based VS. Although anti-Alzheimer’s effects of these
drugs were observed previously and attributed to their
modulation of estrogen receptors (ERs), the evidence about
ER modulators or hormone replacement therapy in post-
menopausal women to prevent or treat the Alzheimer’s disease
has been inconclusive and sometimes even contradictory.82−84

Although postmenopausal estrogen depletion is a known risk
factor for Alzheimer’s disease, estrogen-containing hormone
therapy initiated during late postmenopausal period does not
improve episodic memory (an important early symptom of
Alzheimer’s disease), leads to no improvement or adverse
effects on overall cognitive performance and Alzheimer’s
disease in postmenopausal women,84−86 and it increases the
risk of dementia.83,84 Be that as it may, there is still substantial
evidence from both preclinical and human studies that ovarian
steroids have significant effects on neuroregulatory path-
ways.87−94 However, critical gaps exist in our knowledge of
both the effects on brain function of declining ovarian steroid
secretion during reproductive aging and the role of ovarian
steroid hormone therapy in the prevention or treatment of
brain diseases.82

Raloxifene Identified as a 5-HT6R Antagonist with
Potential Utility in Alzheimer’s Disease. Raloxifene is a
selective estrogen receptor modulator used to prevent or treat
osteoporosis; recently, it was also approved by the FDA as an
anticancer drug for reducing the risk of invasive breast cancer in
postmenopausal women.95 It was one of the low confidence
QSAR-based VS hits because of the low structural similarity
with modeling set compounds. Therefore, we would have
avoided testing this compound if it had not been predicted
from the cmap to have a negative connection with Alzheimer’s
disease. Another level of confidence was obtained from having
other compounds that belonged to the same pharmacological
group (SERMs) that were predicted as 5-HT6R actives with
high confidence (i.e., consensus scores above 0.90) and had
negative connections with Alzheimer’s disease. This example
highlights the value of the integrated informatics approach in
increasing the hit rates of QSAR-based VS. Experimental testing
had indeed confirmed that raloxifene binds to 5-HT6R with a Ki
of 750 nM (Table 5 and Figure 9B).
Yaffe and co-workers examined the data from the Multiple

Outcomes of Raloxifene Evaluation (MORE) trial and
indicated that raloxifene given at a dose of 120 mg/day, but
not 60 mg/day, led to reduced risk of cognitive impairment in
postmenopausal women.96 Additionally, recent studies pointed
out that raloxifene enters the brain in relevant quantities and
exerts a measurable effect in humans.97 It is possible that
raloxifene’s anticipated anti-Alzheimer’s effects could be due to
complex polypharmacological profile effecting several protein
targets and signaling pathways involved in memory, cognition,
inflammation, oxidative control, and other important biological
processes underlying the Alzheimer’s disease etiology, and not
limited to its canonical targets (i.e., estrogen receptors).
Currently, raloxifene is in phase II clinical trials for Alzheimer’s
disease in postmenopausal women.98 This example can thus be
considered as a proof of concept for the ability of our approach
to increase the confidence in the identified hits that are
structurally and biologically dissimilar to training set com-
pounds.

■ CONCLUSIONS
We have developed a novel integrative chemocentric
informatics approach that could be used as a tool for generating
and cross-validating drug discovery hypotheses. Our approach
integrates different in silico strategies and different data types
and sources to increase the confidence in the final hypotheses.
The study design was composed of three major parts: (1)
QSAR-based datamining of chemical libraries to identify new
ligands for target proteins, (2) network-mining to identify
chemicals that could treat specific diseases; and (3) integrating
hits derived from 1 and 2.
This approach has been applied to study the 5-HT6R system

in relation to cognition enhancement strategies which may be
useful for Alzheimer’s and, perhaps, similar diseases with
impaired cognition. Disease gene signatures for Alzheimer’s
disease have been used to query the cmap database to
formulate testable hypotheses about potential treatments.
Common compound hits from QSAR/VS studies against 5-
HT6R and the cmap were tested at 5-HT6R. Our approach
identified 39 drugs, as potential 5-HT6R antagonists, out of
1300 molecules included in DrugBank.62 Thirteen hits with the
highest confidence level were tested in binding assays, and 10
compounds were confirmed as 5-HT6R ligands achieving a
success rate of 77%. We noticed that this study design can be

Table 6. Significance of the Tested Hits in Relation to
Cognition, Neuroprotection, and Anti-Alzheimer’s Effects

compd predicted Ki

significance to Alzheimer’s disease
prevention/treatment

1 active 1956.0 unknown
2 active 112.0 neuroprotective101

3 active 17.0 used in combination therapy for
Alzheimer’s102

4 active 105.0 unknown
5 active NB GABA receptor modulator103,104 and may

inhibit amyloid-β protein oligomerization as
other related antihypertensives105

6 active 1188.0 possible anti-Alzheimer’s effects106

7 active NB can inhibit central sensitization and
neuroinflammation107,108

8 active 214.0 possible anti-Alzheimer’s effects109

9 active NB unknown
10 active 750.0 possible anti-Alzheimer’s effects96

11 active 1041.0 neuroprotective110

12 active 4125.0 unknown
13 active 169.0 facilitates memory in rats111
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applied to many other protein targets involved in the etiology
of Alzheimer’s disease.
We shall emphasize that our approach could be used to aid in

the process of prioritizing computational hits that would not be
picked by an individual model contributing to the integrative
approach presented in this study. For instance, QSAR/VS hits
could emphasize connections from the cmap that one would
not focus on otherwise, especially as the size of the database
continues to grow. In diseases like Alzheimer’s, with little
knowledge about specific etiology and the lack of drug gene
signatures generated from neuronal cell lines, it is hard to
decide a priori which negative connections are more important
to be viewed as potential therapeutics. Reciprocally, one can use
strong connections revealed by cmap to focus on weak hits
resulting from QSAR/VS studies as was demonstrated here for
raloxifene. Thus, herein we have hypothesized and proved that
integrating results generated from the cmap with predictions
generated from QSAR-based VS increased the confidence in
the final hit list of predicted actives.

■ EXPERIMENTAL SECTION
Radioligand Binding Assays. This screen was performed

by the National Institute of Mental Health Psychoactive Drug
Screening Program (PDSP).17 Radioligands were purchased by
PDSP from Perkin-Elmer or GE Healthcare. Competition
binding assays were performed using transfected or stably
expressing cell membrane preparations as previously described
(Shapiro et al.;99 Roth et al.100) and are available online
(http://pdsp.med.unc.edu). All experimental details are avail-
able online (http://pdsp.med.unc.edu/UNC−CH%20Protocol
%20Book.pdf).
Chemistry. Chemical compounds predicted as hits from the

virtual screening were obtained from commercial suppliers
according to their availability. All compounds were ordered to
have above or equal to 95% purity. Additionally, all compounds
were subjected to purity assessment using LC/MS by the
Center for Integrative Chemical Biology and Drug Discovery at
UNC-Chapel Hill (see Supporting Information). LC/MS
spectra of all compounds were acquired from an Agilent 6110
Series system with UV detector set to 220 nm. Samples were
injected (5 μL) onto an Agilent Eclipse Plus 4.6 × 50 mm, 1.8
μM, C18 column at room temperature. A linear gradient from
10% to 100% B (MeOH + 0.1% Acetic Acid) in 5.0 min was
followed by pumping 100% B for another 2 min with A being
H2O + 0.1% acetic acid. The flow rate was 1.0 mL/min.
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